JVC

SERVICE MANUAL CASSETTE RECEIVER

KS-FX888

Contents

Safety precaution 1- 2
Disassembly method 1-3
Adjustment method 1-12
Description of major ICs 1-16~24

Safety precaution

> \ CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

Disassembly method

<Main body>
■Removing the front panel assembly
(See Fig.1)

1. Press the eject button in the lower right part of the front panel. Remove the front panel assembly from the body.

Fig. 1

Fig. 2

Fig. 3

■Removing the heat sink (See Fig.4)

1. Remove the three screws \mathbf{A} on the left side of the body.

Removing the bottom cover

(See Fig. 5 and 6)

- Prior to performing the following procedure, remove the front panel assembly, the front chassis assembly and the heat sink.

1. Turn over the body and unjoint the five joints \mathbf{b} with the bottom cover and the body using a screwdriver.

Fig. 5 (KS-FX501U)

Fig. 6 (KS-FX501U)

Fig. 4

Fig. 5 (KS-FX601U, KS-FX701U)

Fig. 6 (KS-FX601U, KS-FX701U)

Removing the main board

(See Fig. 7 and 8)

- Prior to performing the following procedure, remove the front panel assembly, the front chassis assembly, the heat sink and the bottom cover.

1. Remove the screw \mathbf{B}, the five screws \mathbf{C} and the two screws \mathbf{D} attaching the rear bracket on the back of the body. Remove the rear panel.
(KS-FX601U / KS-FX701U)
2. Remove the screw \mathbf{B}, the four screws \mathbf{C} and the two screws \mathbf{D} attaching the rear bracket on the back of the body. Remove the rear panel. (KS-FX501U)
3. Remove the two screws \mathbf{E} attaching the main board on the bottom of the body. Disconnect connector CN701 on the main board in the direction of the arrow.

Fig. 7 (KS-FX601U, KS-FX701U)

Fig. 7 (KS-FX501U)

Removing the control switch board

(See Fig. 10 to 12)

- Prior to performing the following procedure, remove the front panel assembly.

1. Remove the four screws \mathbf{G} attaching the rear cover on the back of the front panel assembly.
2. Unjoint the twelve joints \mathbf{c} with the front panel and the rear cover.
3. Remove the control switch board on the back of the front panel.

Fig. 10

Fig. 11

Fig. 12
<Removal of the cassette mechanism>
Removing the head amplifier board.
(See Fig. 1 and 2)

1. For the 6 pin wire extending from connector CN402 on the head amplifier board, disconnect it from the head relay board.
2. Disconnect the card wire from connector CN403 on the head amplifier board.
3. Remove the screw \mathbf{A} attaching the head amplifier board.
4. Move the tab a as shown in Fig. 2 and remove the head amplifier board while moving it in the direction of the arrow.

■Removing the cassette mechanism assembly (See Fig. 1 to 3)

1. Disconnect the 6 pin wire from connector CN402 and the card wire from CN403 on the head amplifier board (Refer to Fig. 1 and 2).
2. Remove the four screws \mathbf{B} on the bottom of the cassette mechanism.

Fig. 1

Fig. 3

Removing the head relay board

(See Fig.4)

1. Unsolder the soldering \mathbf{b} on the head relay board.
2. Remove the screw \mathbf{C} attaching the head relay board.
3. Remove the head relay board in the direction of the arrow while releasing the two joints \mathbf{c}.

■Removing the load arm (See Fig.5)

1. Remove the \mathbf{E} washer attaching the load arm using a pincette or something like that and remove the spring d.
2. Move the part of the load arm marked $※$ upwards to release it from the axis of rotation. Then rotate the load arm in the direction of the arrow to remove it from the cach.

■Removing the sub chassis (See Fig.6)

- Prior to performing the following procedure, remove the head relay board.

1. Remove the screw \mathbf{D} attaching the sub chassis.
2. Push the tab \mathbf{e} in the direction of the arrow to detach the one side of the sub chassis. Then release the sub chassis from the tab f.

■Removing the cassette holder and the holder arm in the eject mode

(See Fig. 7 and 8)

- Prior to performing the following procedure, remove the head relay board, the load arm and the sub chassis.

1. Remove the screw \mathbf{E} attaching the reinforce bracket.
2. Remove the reinforce bracket.
3. Push the tab \mathbf{g} fixing the cassette holder in the direction of the arrow and open the cassette holder and the holder arm upward until they stop at an angle of 45 degrees. Move the two joints \mathbf{h} to the side and remove the cassette holder and the holder arm from the shaft.

Fig. 4

Fig. 5

Fig. 7

■Removing the play head (See Fig.9)

- Prior to performing the following procedure, remove the head relay board and the sub chassis.

1. Remove the two screws \mathbf{F} attaching the play head (The spring under the play head comes off at the same time).

■Removing the pinch roller ass'y

(See Fig.9)

- Prior to performing the following procedure, remove the head relay board and the sub chassis.

1. Push each tab \mathbf{i} in the direction of the arrow and pull out the pinch rollers on both sides.

Removing the reel disc board

(See Fig.10)

1. Unsolder the soldering \mathbf{j} on the reel disc board.
2. Push the seven tabs \mathbf{k} on the bottom of the cassette mechanism assembly in the direction of the arrow.

- Removing the motor and the sub motor

 (See Fig. 10 and 11)1. Unsolder the two soldering I of the motor and the sub motor.
2. Release the sub motor from the three tabs m. Push the sub motor upward and pull out it.
3. Remove the belt on the bottom of the cassette mechanism assembly and remove the two screws \mathbf{G} attaching the motor.

ATTENTION: The motors can be detached before removing the load arm.

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Removing the flywheel

(See Fig. 10 and 12)

1. Prior to performing the following procedure, remove the head relay board, the load arm, the sub chassis, the cassette holder, the holder arm and the reel disc board.
2. Remove the belt on the bottom of the cassette mechanism ass'y.
3. Remove the slit washer attaching the flywheel on the upper side of the cassette mechanism ass'y and pull out the flywheel downward. Then remove another flywheel in the same way.

ATTENTION: When reassembling, make sure to use a new slit washer.

\square Removing the reel disc ass'y(I)

(See Fig. 12 to 14)

- Prior to performing the following procedure, remove the head relay board, the load arm, the sub chassis, the cassette holder and the holder arm.

1. Disengage the part \mathbf{n} inside of the reel driver which engages with the shaft, using a pincette or something like that. Then remove the reel driver from the shaft.
2. Remove the reel driver spring and the reel table.

Fig. 10

Fig. 12

Fig. 13

Fig. 14

■Removing the reel disc ass'y(II)

(See Fig. 12 to 15)
ATTENTION: Prior to performing the following procedure, remove the reel disc (I).

1. Release the plate from the three tabs $\mathbf{0}$.
2. Push aside the gear over the reel table using a pincette or something like that.
3. Remove the reel disc ass'y (II) as with the reel disc ass'y (I).

ATTENTION: Do not break the front panel tab fitted to the metal cover.

Push aside the gear and reattach the reel disc Ass'y(I).

Fig. 15

Adjustment method

■Test instruments reqired for adjustment

1. Digital osclloscope(100 MHz)
2. Frequency Counter meter
3. Electric voltmeter
4. Wow \& flutter meter
5. Test Tapes

MC-109C \qquad for TAPA CURL confirmation (without Padd type)
VT724 \qquad for DOLBY level measurement
VT739 \qquad For playback frequency measurement VT712.... For wow flutter \& tape speed measurement VT703 \qquad For head azimuth measurement
6. Torque gauge \qquad Cassette type for CTG-N (mechanism adjustment)

■Measuring conditions(Amplifier section)

Power supply voltage \qquad DC14.4V (10.5-16V)
Load impedance 4Ω (2Speakers connection)
Line out 20k Ω

Standard volume position

Balance and Bass,Treble volume .Fader
:Center(Indication"0")
Loudness,Dolby NR,Sound,Cruise:Off
Volume position is about 2 V at speaker output with
following conditions.Playback the test tape VT721.

AM mode $\quad 999 \mathrm{kHz} / 62 \mathrm{~dB}, \mathrm{INT} / 400 \mathrm{~Hz}, 30 \%$
modulation signal on recieving.
FM mono mode $97.5 \mathrm{MHz} / 66 \mathrm{~dB}, \mathrm{INT} / 400 \mathrm{~Hz}, 22.5 \mathrm{kHz}$
deviation pilot off mono
FM stereo mode $1 \mathrm{kHz}, 67.5 \mathrm{kHz}$ dev. pilot 7.5 kHz dev.
Output level OdB

Arrangement of adjusting \& test points

Cassette mechanism
(Surface)

Azimuth screw B
(Reverse)

Head section view

■ Information for using a car audio service jig

1. We're advancing efforts to make our extension cords common for all car audio products. Please use this type of extension cord as follows.
2. As a U-shape type top cover is employed, this type of extension cord is needed to check operation of the mechanism assembly after disassembly.
3. Extension cord : EXTKSRT002-18P (18 pin extension cord) For connection between mechanism assembly and main board assembly.
Check for mechanism driving section such as motor ,etc..

■Disassembly method

1. Remove the bottom cover.
2. Remove the front panel assembly.

Cassette mechanism
3. Remove the top cover .
4. Install the front panel.
5. Confirm that current is being carried by connecting an extension cord jig.
Note
Available to connect to the CP701 connector when installing the front panel.
to Cassette mechanism

EXTKSRT002-18P

Description of major ICs

■ LC72366-9985 (IC701) : System CPU

1. Pin layout

| 25 | 24 | \sim | 1 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | | | | 2 |
| 40 | 41 | \sim | 64 | 65 |

2. Pin function

Pin No.	Symbol	I/O	Function
1	XIN	1	Crystal oscillator input port
2	GND	-	Connect to GND
3	J-BUS SI	I	Data input for J-BUS information
4	J-BUS SO	0	Data output for J-BUS information
5	J-BUS SCK	0	Clock output for J-BUS information
6	J-BUS I/O	0	Switching signal output for J-BUS information I/O, H:Out L:In
7	NC	-	None connection
8	LCD SO	0	Data output for LCD driver
9	LCD SCK	0	Information clock output for LCD driver data
10	LCD CE	0	Chip enable output for LCD driver
11	DIMMER IN	-	None connection
12	EVOL SO	0	Data output for electrical volume
13	EVOL SCK	O	Clock output for electrical volume information
14	NC	-	Non connection
15	TUNER ILLUM	-	Non connection
16	TAPE ILLUM	-	Non connection
17	CD ILLUM	-	Non connection
18	DEMERIT	-	Non connection
19	NC	-	Non connection
20	OPEN	-	Non connection
21	NC	-	Non connection
22	NC	-	Non connection
23	NC	-	Non connection
24	NC	-	Non connection
25	KS1	-	Non connection
26	KS0	0	Diode matrix output port for initial establishing
27	K3	1	Diode matrix output port for initial establishing
28	K2	I	Diode matrix output port for initial establishing
29	K1	-	Non connection
30	K0	1	Diode matrix output port for initial establishing
31	Vdd	-	5 V power supply port (+B)
32	TEST	,	Turn on all light indicator of LCD, L: All light a LED indicator
33	FF/REW MODE	0	FF/REW mode select signal output
34	SEEK/STOP	0	H:Auto seek, L: Stop Use both as IF count REQ and Seek/Stop
35	MONO	0	Forced monaural output port, H:Turn on Forced monaural
36	RADIO/TAPE	-	Non connection
37	BEEP LEVEL	-	Non connection
38	PWR-CNT	O	"H" : Turn on power
39	ACC	-	Non connection
40	KICK	-	Non connection

Pin No.	Port Name	I/O	Function	
41	MOTOR	0	Main motor output, H:Transport L: Stop	
42	SUBMO+	0	Sub-motor output(+), Loading direction to transport output	
43	SUBMO-	0	Sub-motor output(-), Eject direction to transport output	
44	BEEP	-	Non connection	
45	TAPE IN	1	Switch for detecting to input cassette, L: Cassette in	
46	STANDBY	1	Switch for detecting standby position	
47	REEL	1	Switch for detecting tape end position	
48	MODE	1	Detecting mode position input	
49	F/R	1	Switch for detecting forward/reverse , H:FWD L:REV	
50	MS	1	MS input port,	
51	SD/ST	1	Station detector, Stereo signal input, H:SD	
52	DETACH	0	Front panel detect	
53	ENC1	1	Connect to encoder 1	
54	ENC2	1	Connect to encoder 2	
55	J-BUS INT	1	Cut in signal detecting port from J-Bus information	
56	REMOCON	-	Non connection	
57	FM/AM	0	FM/AM mode switching signal port, H:FM L:AM	
58	DOLBY	-	Non connection	
59	NC	-	Non connection	
60	MUTE	0	Mute output port, L:Mute	
61	MEM DET	1	Back-up power supply detecting port, H:input L:no input	
62	LEVELMETER	1	Pressure voice level voltage input for level meter.	
63	S.METER	1	S meter voltage input	
64	KEY2	1	Key 2 input port	
65	KEY1	1	Key 1 input port	
66	KEYO	1	Key 0 input port	
67	ACCDET	1	Hold port for Acc detecting, L: Hold mode	
68	SENSE	1	Voltage sensor port	
69	AM IF COUNT	-	Non connection	
70	FM IF COUNT	1	FM frequency detecting	
71	NC	-	Non connection	
72	NC	-	Non connection	
73	Vdd	-	5V power supply (+B)	
74	AM OSC	1	Non connection	
75	FM OSC	1	FM limited signal input	
76	VSS	-	Ground port for power supply	
77	NC	-	Non connection	
78	E0	0	Error signal output port for PLL	
79	TEST1	-	Test port for LSI, To connect ground	
80	XOUT	0	4.5MHz crystal oscillator output	

AN80T05 (IC901) : Regulator

1. Terminal layout \& Block diagram

2.Pin function

in No.	Symbol	Function
1	ILL	10 V power supply for illumination.
2	MODE2	When 5V is input,becomes AM. and the antenna output is turned on.
3	MODE1	When 5V is input,becomes AM. and the output of FM is switched.
4	STB	When 5V is input, outputs to ILL,COM, and AMP. It is 0 V usually.
5	VDD	5.6 V power supply.
6	AMP	Power supply supply to remote amplifier
7	VCC	Back up. connects with ACC with it.
8	ANT	Power supply supply to auto antenna.
9	COM	8.7 V power supply.
10	AM	The power supply of 8.7V to AM.
11	FM	The power supply of 8.7 V to FM.
12	GND	Ground

CXA2559Q(IC401):Playback equalizer amplifier with music sensor

1.Pin layout

O	40	\sim	31	
1			30	
s			s	
10				21
	11	\sim	20	

3.Pin function
2.Blockdiagram

Pin No.	Symbol	I/O	
1	PBTC1	-	Terminal of capacity of reproduction equalizer reproduction
2	PBOUT1	O	qualizer output terminal
3	OUTREF1	O	Output standard terminal
4	TAPEIN1	I	Tape input terminal
5	Vcc	-	Power supply terminal
6	NC	-	Non connection
7	LINEOUT1	O	Line-out output terminal
8,9	NC	-	Non connection
10	MSLPF	-	Detection LPF terminal between tunes
11	G2FB	-	Detection level set terminal between tunes
12	GI1FB	-	Detection level set terminal between tunes
13	MSTC	-	Time constant connection terminal for the detection between tunes
14	MSOUT	O	Detection output terminal between tunes
15,16	NC	-	Non connection
17	MUTESW	I	Mute function control terminal
18	TAPESW	I	Reproduction equalizer control terminal
19	DRSW	I	Head change control terminal
20	MSMODE	I	Detection mode control terminal between tunes
21	MSSW	I	Detection function control terminal between tunes
22,23	NC	-	Non connection
24	LINEOUT2	O	Line-out output terminal
25	DIREF	-	Resistance connection terminal for standard current setting
26	GND	-	Earth terminal
27	TAPEIN2	I	Tape input terminal
28	OUTREF2	O	Output standard terminal
29	PBOUT2	O	Reproduction equalizer output terminal
30	PBTC2	-	Terminal of capacity of reproduction equalizer
31	PBFB2	I	Reproduction equalizer return terminal
32	PNRIN2	I	Reproduction equalizer input terminal
33	PBGND	-	Reproduction equalizer system earth terminal
34	PBFIN2	I	Reproduction equalizer input terminal
35	VCT	O	Middle point terminal
36	PBREF	O	Reproduction equalizer standard terminal
37	PBFIN1	I	Reproduction equalizer input terminal
38	PBGND	-	Reproduction equalizer system earth terminal
39	PBRIN1	I	Reproduction equalizer input terminal
40	PBFB1	I	Reproduction equalizer return terminal

■ HA13158A (IC301) : Power amp

1. Pin layout

2. Block diagram

HD74HC126P (IC801) : Changer control
1.Pin arrangement

2. Pin function

Input		Output
C	A	Y
L	X	Z
H	L	L
H	H	H

3. Block diagram

■KIA7810PI (IC902) : Regulator

LB1641 (IC402) : DC motor driver

1. Pin layout
 GNDOUT1 P1 VZ IN1 IN2 VCC1VCC2 P2 OUT2
2. Pin function

Input		Output		Mode
IN1	IN2	OUT1	OUT2	
0	0	0	0	Brake
1	0	1	0	CLOCKWISE
0	1	0	1	COUNTER-CLOCKWISE
1	1	0	0	Brake

LC75823W (IC651) : LCD driver

1. Pin Layout \& Symbol

2. Pin Function

Pin No.	Symbol	I/O	Function
1 to 52	S1 to S52	0	Segment output pins used to display data transferred by serial data input.
53 to 55	COM1 to COM3	0	Common driver output pins. The frame frequency is given by : $\mathrm{t} 0=(\mathrm{fosc} / 384) \mathrm{Hz}$.
56	VDD	--	Power supply connection. Provide a voltage of between 4.5 and 6.0 V .
57	$\overline{\mathrm{INH}}$	1	Display turning off input pin. TNT="L" (Vss) ----- off (S1 to S52, COM1 to COM3="L" $\overline{\mathrm{INT}}=\mathrm{H} \mathrm{H}^{\prime}$ (VDD)----- on Serial data can be transferred in display off mode.
58	VDDD1	I	Used for applying the LCD drive $2 / 3$ bias voltage externally. Must be connected to VDD2 when a $1 / 2$ bias drive scheme is used.
59	VDD2	I	Used for applying the LCD drive $1 / 3$ bias voltage externally. Must be connected to VDD1 when a $1 / 2$ bias drive scheme is used.
60	Vss	--	Power supply connection. Connect to GND.
61	OSC	1/O	Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor at this pin.
62 63	CE CL	1	Serial data interface connection to the controller. CL : Chip enable
64	DI		DI : Transfer data

TEA6320T-X (IC161) : E.volume

1.Pin layout

SDA	1	32	SCL
GND	2	31	VCC
OUTLR	3		30
OUTRR			
OUTLF	4	29	OUTRF
TL	5	28	TR
B2L	6	27	B2R
B1L	7		26
B1R			
IVL	8	25	IVR
ILL	9	24	ILR
QSL	10		23
IDL	11		22
IDR			
MUTE	12		21
ICL	Vref		
ICL	13	CD-CH	20
ICR			
IMD	14		19
IBL	15	TAPE	18
IAR			
IAL	16	TUNER	17

2.Block diagram

3.Pin functions

Pin No.	Symbol	I/O	Functions	Pin No.	Symbol	I/O	Functions
1	SDA	I/O	Serial data input/output.	17	IAR	I	Input A right source.
2	GND	-	Ground.	18	IBR	I	Input B right source.
3	OUTLR	O	output left rear.	19	CAP	-	Electronic filtering for supply.
4	OUTLF	O	output left front.	20	ICR	I	Input C right source.
5	TL	I	Treble control capacitor left channel or input from an external lequalizer.	21	Vref	-	Reference voltage (0.5Vcc)
6	B2L	-	Bass control capacitor left channel or output to an external equalizer.	22	IDR	-	Not used
7	B1L	-	Bass control capacitor left channel.	23	QSR	O	Output source selector right channel.
8	IVL	I	Input volume 1. left control part.	24	ILR	I	Input loudness right channel.
9	ILL	I	Input loudness. left control part.	25	IVR	I	Input volume 1. right control part.
10	QSL	O	Output source selector. left channel.	26	B1R	-	Bass control capacitor right channel
11	IDL	-	Not used	27	B2R	O	Bass control capacitor right channel or output to an external equalizer.
12	MUTE	-	Not used	28	TR	I	Treble control capacitor right channel or input from an external equalizer.
13	ICL	I	Input C left source.	29	OUTRF	O	Output right front.
14	IMO	-	Not used	30	OUTRR	O	Output right rear.
15	IBL	I	Input B left source.	31	VcC	-	Supply voltage.
16	IAL	I	Input A left source.	32	SCL	I	Serial clock input.

< MEMO >

